Basic Neuroscience

Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts

Vassili Tsytasarev, Bin Rao, Konstantin I. Maslov, Li Li, Lihong V. Wang

*Corresponding author at: Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, United States.

E-mail addresses: tsiytasarev@umaryland.edu (V. Tsytasarev), raob@seas.wustl.edu (B. Rao), kimashlov@biomed.wustl.edu (K.I. Maslov), li.li@mgh.harvard.edu (L. Li), lhwang@seas.wustl.edu, lhwang@wustl.edu (L.V. Wang).

Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, United States.

University of Maryland School of Medicine, Department of Anatomy and Neurobiology, 20 Penn Street, HSF-II, Baltimore, MD 21201, United States.

Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, 40 Parkman Street, Room 160, Ruth Sleeper Hall, Boston, MA 02114, United States.

A R T I C L E I N F O

Article history:
Received 28 January 2013
Received in revised form 1 April 2013
Accepted 4 April 2013

K E Y W O R D S:
Photoacoustic microscopy
Optical coherence tomography
Epileptic seizures
4-Aminopyridine

A B S T R A C T

Epilepsy mapping with high spatial and temporal resolution has great significance for both fundamental research on epileptic neurons and the clinical management of epilepsy. In this communication, we demonstrate for the first time in vivo epilepsy mapping with high spatial and temporal resolution and dual optical contrasts in an animal model. Through the variations of a depthresolved optical coherence tomography signal with optical scattering contrast, we observed that epileptic neuron activities modulated the optical refractive index of epileptic neurons and their surrounding tissue. Simultaneously, through neurovasculature coupling mechanisms and optical absorption contrast, we used photoacoustic signals to document the hemodynamic changes of the microvasculature surrounding the epileptic neurons. The epilepsy mapping results were confirmed by a simultaneously recorded electroencephalogram signal during epileptic seizure. Our new epilepsy mapping tool, with high temporal and spatial resolution and dual optical contrasts, may find many applications, such as drug development and epilepsy surgery.

© 2013 Elsevier B.V. All rights reserved.

H I G H L I G H T S

- Epileptic seizures in the mice neocortex were induced in vivo by intracortical injection of 4-aminopyridine.
- Optical coherence tomography and photoacoustic images of the cortex were acquired simultaneously.
- We have observed a decrease in optical scattering caused by the epileptic seizures.
- We have observed vasodilatation of the small blood caused by the epileptic seizures.

1. Introduction

Epilepsy results from “electrical storms” inside the brain that cause recurring seizures. About 2 in 100 people in the United States experience an unprovoked seizure at least once in their lives. The population and shape of involved epileptic neurons vary along the time course of each epileptiform event in a very short time span (Pinto et al., 2011). Current clinical functional imaging methods, such as functional magnetic resonance imaging (fMRI) (Lin and Chiang, 2013), positron emission tomography (PET) and single-photon emission computed tomography (SPECT), are limited by their low temporal resolution in documenting such paroxysmal epileptiform events (Craven et al., 2010). High temporal resolution is critical to overcome the motion artifacts caused by patients or procedures during epilepsy surgery. Although optical mapping methods such as intrinsic optical imaging (IOS) (Bahar et al., 2006; Inyushin et al., 2001; Haglund and Hochman, 2004; Schwartz et al., 2004; Schwartz and Bonhoeffer, 2001) and voltage-sensitive dye imaging (VSD) (Cohen and Lesher, 1986; Tsytasarev et al., 2008, 2009, 2010) have limitations in imaging depth and tissue toxicity, the development of epileptic animal models has made them very useful (Rao and Brooks–Kayal, 2012). More recent developments in the optical mapping of neural activities include the optical coherence tomography (OCT) (Satomura et al., 2004; Aguirre et al.,...
2. Materials and methods

2.1. Animal preparations

For each experiment, a Swiss Webster mouse (Hsd: ND4, 25–30 g; Harlan, Indianapolis, IN) was anesthetized by an intraperitoneal (IP) injection of a mixture of ketamine (87 mg/kg) and xylazine (13 mg/kg). The anaesthetized animal was placed in a custom-made stereotactic head holder, and the left dorsal portion of the skull was exposed by surgically removing the scalp and muscle. A cranial opening (~4–5 mm²) was made using a dental drill over the left hemisphere, and the exposed dura mater surface was cleaned with artificial cerebrospinal fluid (ACSF). Throughout the experiment, the animal was supplied with breathing-grade compressed air (AI B300, Aigars, MO) and maintained under anesthesia using isoflurane (1.0–1.5% with an airflow rate of ~1 L/min), while the body temperature of the animal was maintained at 37 °C by a temperature-controlled electrical heating pad. After each experiment, the animal was euthanized with an overdose of pentobarbital. All experimental animal procedures were carried out in conformance with the laboratory animal protocol approved by the Animal Studies Committee of Washington University in St. Louis.

2.2. Inducement of the epileptic seizures

After craniotomy, 0.35 µL of a 25 mM solution of 4-aminopyridine (4-AP) in artificial cerebrospinal fluid (ACSF) was injected into cortical layers II–III, using an injector device (Nanojet II) with a 15–25 µm diameter glass microcapillary (Bahar et al., 2006; Tsytsarev et al., 2012b). The injector was mounted on a micromanipulator that allowed injections 0.2–0.3 mm below the dura mater surface. A single channel electroencephalogram (EEG) was recorded through a screw-type electrode placed in the left hemisphere in the skull, then amplified by an AC/DC differential amplifier (A-M Systems, Model 3000), digitized at 5000 Hz, and recorded. The start of EEG data acquisition was manually initiated.

2.3. Optical epilepsy mapping with dual contrasts

A dual modality optical imaging system that can simultaneously provide a co-registered OCT image and a PAM image (Fig. 1) was used to provide optical mappings of epilepsy. The OCT imaging channel provided depth-resolved brain tissue structure images based on optical scattering contrast (Rao et al., 2008). The PAM channel provided depth-resolved brain vasculature images based on optical absorption contrast (Rao et al., 2010a). OCT and PAM A-lines were acquired sequentially for each scanning location. Thus, an OCT image and a PAM image were recorded virtually simultaneously. Each B-scan frame contained 800 scanning points (A-lines). At an imaging speed of 5000 A-lines-per-second, 500 B-scan frames were acquired within an 80 s time window (Rao et al., 2010b). Similar to the procedures described in our previous publications (Tsytsarev et al., 2011; Hu et al., 2009), we identified two vessels close to the 4-AP injection site and performed repeated B-scans over the selected vessels to map epilepsy in both spatial and time dimensions. The temporal resolution of epilepsy mapping was 6.25 Hz. The spatial lateral resolutions of epilepsy mapping with OCT and PAM were 5.2 µm and 3.5 µm, respectively.

Fig. 1. Schematic of the dual-modality OCT/PAM imaging probe. The OCT system was connected to the dual-modality probe through a single-mode fiber (HI-780, Thorlabs). The 532 nm pulsed laser was connected to the probe with another single-mode fiber (460-HP, Thorlabs). The collimated OCT sample and the 532 nm PAM excitation beams were combined using a dichroic mirror and focused by a microscope objective (NA 0.1) at 200 µm below the tissue surface. Fast optical scanning along one axis (B-scan) was done by a galvanometer mirror. Upon the absorption of the laser pulse by the tissue, photoacoustic waves were generated. Thereafter, the waves were reflected by a glass plate placed at 45° between the objective and the animal, and detected by the cylindrically focused ultrasonic transducer (GE, 25 MHz bandwidth). The whole probe was attached to a one-dimensional mechanical stage, which scanned perpendicularly to the fast optical scan axis. The OCT A-line image and the PAM A-line image were acquired sequentially for each A-line.
The depth-resolved reflectivity change $\Delta R(x,t)$ during seizure is shown in Fig. 2D. From the plot of $\Delta R(x,t)$, we can easily visualize the depth-resolved reflectivity change along the whole time course of the seizure. A reflectivity change $\Delta R(t)$ averaged along the depth direction at each sampling time point can represent the trend of reflectivity variation in a simple plot, as shown in Fig. 2E. The suddenly decreased reflectivity (represented by the color change from green to blue in Fig. 2D and by the curved dip in Fig. 2E) coincided with the start of vessel dilation. The changes in cortical reflectivity ended approximately at the seizure’s end. In spite of the low transparency of the brain tissue, we were able to record the tissue-scattering signal from 2 mm below the surface, which is deeper than the cortical thickness. With fair confidence, we conclude that both $\Delta R(x,t)$ and $\Delta R(t)$ are more sensitive in signaling the start and the end of the seizure than EEG signals.

4. Discussion

The 4-AP model of epileptic seizures (Bahar et al., 2006; Tsytsoarev et al., 2011; Zhao et al., 2011; Raol and Brooks-Kayal, 2012) allows us to investigate periods of induction, maintenance, and propagation of seizure discharges, and has been extensively studied using different optical methods. It is generally known that epileptic seizures are accompanied by a local increase in cerebral blood flow to the epileptic focus (Zhao et al., 2011; Hirase et al., 2004; Santisakultarm and Schaffer, 2011; Schwartz et al., 2004), but the relationship between seizures and neuronal activity remains unclear. The trigger mechanism of the seizure as a synchronized activity of the neural network is also not very well established. Although it is unlikely that vasodilatation itself can initiate the seizure, fast vasodilatation might be a first indicator of the local biochemical process that accompanies the seizure’s beginning. It was proposed by Pereira de Vasconcelos et al. (1995) that nitric oxide triggers vasodilation in response to focal epileptic seizures, but in their work, vasodilation was observed in a relatively large area, including both the cortex around epileptic foci and also (bilaterally) the substantia nigra and the parafascicular thalamic nucleus. It seems possible that astrocytes’ release of glutamate in the area of the epileptic focus plays a causal role in synchronous firing of large neural population (Carmignoto and Haydon, 2012; Inyushin et al., 2010, 2012). Synchronous activity of the astrocytic syncytium may cause changes in the optical features of the cortical tissue that can be observed by OCT.

OCT has been used for in vivo brain imaging in animal experiments (Satomura et al., 2004; Aguire et al., 2006; Rajagopalan and Tanifuji, 2007; Chen et al., 2009; Sato et al., 2010; Liang et al., 2011; Lenkov et al., 2005; Eberle et al., 2012) and provides high spatial resolution and a wide field of view. The modulation of the optical refractive index by the epileptic neuronal activity during a seizure coincides with the observation of surface reflectivity changes. As demonstrated in our experiments, OCT represents a very effective direct optical epilepsy mapping method, with a depth range of about 2 mm. Due to the well-known neurovasculature coupling mechanism, dynamic blood flow changes such as the vasodilatation observed in our experiments may be established as another effective optical epilepsy mapping method for documenting epilepsy seizure. Theoretically, most blood flow imaging methods, including Doppler OCT and its variants, could be used to record the dynamic blood flow change caused by an epileptic seizure. The recently invented PAM technology has major advantages due to both its high contrast (as high as 40 dB) and its multi-scale imaging capability.
which provides a much deeper imaging depth not achievable by other optical imaging technologies. In this demonstration, we used a very simple epilepsy mapping protocol, which does not utilize the full speed of our imaging systems (20,000 A-lines-per-second). It is very straightforward to upgrade the dual contrast imaging system to a 100,000 or 200,000 A-lines-per-second imaging speed, enabling more sophisticated mapping protocols. The dual contrast optical epilepsy mapping method demonstrated in this short communication presents a new tool for epilepsy drug development with small animal models (Raol and Brooks-Kayal, 2012). With appropriate modifications, it could be used as an intra-operative tool for determining the boundary of epileptic tissue in epilepsy surgery (Haglund and Hochman, 2004).

5. Conclusions

We demonstrate for the first time in vivo epilepsy mapping with high spatial and temporal resolution and dual optical contrasts in an animal model. Through the variations in a depth-resolved optical coherence tomography signal with optical scattering contrast, we observed variations of the depth resolved optical reflection signal from epilepsy tissue. Simultaneously, through neurovascular coupling (Y, V, M, and J absorption contrast), we used photoacoustic signals to detect the hemodynamic changes of the microvasculature surrounding the epileptic neurons. The epilepsy mapping results were confirmed by a simultaneously recorded electroencephalogram signal during epileptic seizure. Our new epilepsy mapping tool, with high temporal and spatial resolution and dual optical contrasts, may find many applications, such as in drug development and epilepsy surgery.

Acknowledgements

This work was supported in part by National Institutes of Health grants R01 EB008085, R01 CA134539, U54 CA136398, R01 CA157277, R01 CA159595, DP1 EB016986 (NIH Director’s Pioneer Award). L.W. has a financial interest in Microphotonics, Inc. and Endra, Inc., which, however, did not support this work. K.M. has a financial interest in Microphotonics, Inc., which, however, did not support this work.

References

