






















retention that will need to be tested in disease models. Equally
surprising was the minimal effect of CXCR4 blockade, particularly
on myeloid cell retention. These results were in contrast with the
potent ability of CXCR4 blockade to decrease both stromal
myeloid cell retention and microvascular density in ischemia,
tumor xenografts, and conditional VEGF induction models.2,13,36

Our study suggests that the SDF-1 signaling requirement for
myeloid retention is cell context, tissue, and disease dependent.
Most surprising was the persistence of the HIF-1 microvasculature
during maintenance stage DC101/MF-1-mediated myeloid cell
depletion, as these cells are the source of multiple angiogenic
factors responsible for VEGF inhibitor evasion or amplification of
therapeutic angiogenesis in preclinical tumor or ischemia mod-
els.13,36,50,51 As such, our work highlights the fact that myeloid cell
accumulation in angiogenic tissues does not necessarily support
neovascular persistence. Rather the bona fide ischemic or tumor
microenvironment is required for proangiogenic myeloid cell
subset production.

PAM, combining optical excitation and ultrasonic detection, has
multiple attractive features. First, the endogenous hemoglobin
absorption contrast enables PAM to identify RBC-perfused micro-
vasculature, the functional vascular subset responsible for tissue
oxygen supply.52 Second, the one-way ultrasonic path enhances
tissue transparency because acoustic scattering in biologic tissues
is much weaker (1000 times less) than optical scattering. Third, the
combination of the high nonradiative quantum yield of hemoglo-
bin, the perfect 100% sensitivity of PAM to optical absorption, and
the enhanced tissue transparency enables imaging sensitivity down
to the single RBC level with a low laser exposure (contrast-to-noise
ratio is � 100:1 with 570-nm laser excitation).53 Fourth, the
combination of the contrast-free preparation and low-level laser
exposure enables noninvasive repetitive imaging of chronic pro-
cesses including, but not limited to, temporal angiogenesis. With
the present L-PAM, we were able to dissect neovascular elabora-
tion in TetON-HIF-1 mice at the capillary level in the same animal
for prolonged observation intervals (60 days, or more if necessary).
The feature extraction capability of L-PAM enabled determination
of the differential responsiveness of capillaries versus arterio-
venous vessels to angiogenic inhibitors. Emergent translational
L-PAM advances are focusing on imaging and therapy monitoring
for skin cancer, breast cancer, and internal yet endoscopically
accessible organs, such as esophagus, colon, and bladder, in cancer
patients.

In conclusion, the TetON-HIF-1 mouse model revealed novel
aspects of neovascular regulation divergent from previous preclini-
cal studies but strikingly convergent with clinical challenges,
facing both angiogenesis inhibitors in cancer and vascular restora-

tion in ischemia. L-PAM’s ability to both longitudinally image
neovascularization and to segment microvessel subset responses to
angiogenesis inhibitors will be a boon to the study of ischemic and
tumor neovascularization.
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